Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-[5-(3-Chlorophenyl)-2-methyl-3-thienyl]-3,3,4,4,5,5-hexafluoro-2-(2-methoxyphenyl)cyclopent-1-ene

Congbin Fan,* Weijun Liu, Gang Liu and Tianshe Yang

Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, People's Republic of China Correspondence e-mail: congbinfan@yahoo.com.cn

Received 11 April 2009; accepted 14 April 2009

Key indicators: single-crystal X-ray study; T = 291 K; mean σ (C–C) = 0.003 Å; disorder in main residue; R factor = 0.040; wR factor = 0.111; data-to-parameter ratio = 12.5.

The title compound, C₂₃H₁₅ClF₆OS, has thienyl and phenylene substituents on the double-bond C atoms of the envelopeshaped cyclopentenyl ring. The aromatic systems are aligned at 55.3 (4) (thienyl) and 60.8 (7) $^{\circ}$ (phenylene) with respect to the planar C-C=C-C portion of the main central cyclopentenyl ring.

Related literature

For the synthesis of the precursors and related compounds, see: Fan et al. (2008, 2009); Pu et al. (2008).

Experimental

Crystal data

C23H15ClF6OS	$\gamma = 80.639 (1)^{\circ}$
$M_r = 488.86$	V = 1080.7 (2) Å ³
Triclinic, P1	Z = 2
a = 9.4057 (10) Å	Mo $K\alpha$ radiation
b = 10.2900 (11) Å	$\mu = 0.34 \text{ mm}^{-1}$
c = 11.9548 (13) Å	$T = 291 { m K}$
$\alpha = 83.529 \ (1)^{\circ}$	$0.49 \times 0.45 \times 0.33 \text{ mm}$
$\beta = 71.564 \ (1)^{\circ}$	

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS: Sheldrick, 1996) $T_{\min} = 0.851, T_{\max} = 0.896$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.111$ S = 1.033997 reflections 321 parameters

3997 independent reflections 3358 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.011$

8254 measured reflections

553 restraints H-atom parameters constrained $\Delta \rho_{\rm max} = 0.28 \text{ e} \text{ Å}^ \Delta \rho_{\rm min} = -0.36$ e Å⁻³

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

This work was supported by the Science Fund of the Education Office of Jiangxi (grant Nos. GJJ09306 and GJJ09302) and the Youth Science Fund of the Education Office of Jiangxi (grant Nos. GJJ09567 and GJJ09572).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2571).

References

Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.

Fan, C.-B., Liu, G., Liu, W.-J., Yang, T.-S. & Ng, S.-W. (2009). Acta Cryst. C65, 0243-0244

Fan, C.-B., Pu, S.-Z., Liu, G. & Yang, T.-S. (2008). J. Photochem. Photobiol. A, 194. 333-343

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Pu, S.-Z., Fan, C.-B., Miao, W.-J. & Liu, G. (2008). Tetrahedron, 64, 9464-9470. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2009). E65, o1105 [doi:10.1107/S1600536809013993]

1-[5-(3-Chlorophenyl)-2-methyl-3-thienyl]-3,3,4,4,5,5-hexafluoro-2-(2-methoxyphenyl)cyclopent-1-ene

C. Fan, W. Liu, G. Liu and T. Yang

Comment

Crystal of the compound when dissolved in hexane can show photochromism. Upon irradiation with 365 nm light, the colorless crystals hexane solution turns blue rapidly. The blue compound displays an absorption maximum at 584 nm. Upon irradiation with visible light with a wavelength greater than 510 nm, the blue crystals hexane solution revert to their initial colorless state; a hexane solution has an absorption maximum at 291 nm. In a polymethylmethacylate amorphous film, the title diarylethene also demonstrates photochromism as similar as that in hexane.

Experimental

The title compound was synthesized from the reaction of (2-methoxylpheny)perfluorocyclopent-1-ene (1.43 g, 4.75 mmol) (Fan *et al.*, 2009) and 3-bromo-2-methyl-5-(3-chlorophenyl)thiophene (1.44 g, 5 mmol) (Fan *et al.*, 2008) with *n*-butyllithium (2.0 ml, 5 mmol) at 195 K under a nitrogen atmosphere. After an hour, the reaction was quenced by the addition of water. The solid product was purified by column chromatography on silica with petroleum ether as the eluent to give the title compound 1.58 g (3.23 mmol) in 68% yield. C&H elemental analysis. Calc. for $C_{23}H_{15}ClF_6OS$: C 56.51, H, 3.09%. Found C 55.92, H 3.15%.

Refinement

All H atoms attached to C were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl) or 0.93 Å (aromatic) with $U_{iso}(H) = 1.2U_{eq}(aromatic)$ or $U_{iso}(H) = 1.5U_{eq}(methyl)$. The cyclopent-1-ene ring in C9, C10, C11-envelope conformation is disorder, the C8—C9, C8—C9', C12—C11 and C12—C11' distance was strained to 1.50 (1) Å, respectively. The distance of C9—F1, C9—F2, F9'—F1', C9'—F2', C10—F3, C10—F4, C10'—F3', C10'—F4', C11—F5, C11—F6, C11'—F5'and C11—F6' was restrained to 1.34 (1) Å, respectively. The occupancies of the disorder components refined to a 0.784 (3):0.216 (3) ratio for C9:C9', F1:F1' and F2:F2'. The occupances of the disorder components refined to a 0.834 (5):0.166 (5) ratio for C11:C11', F5:F5', F6:F6' and 0.826 (2):0.174 (2) ratio for C10:C10', F3:F3', F4:F4'.

Figures

Fig. 1. Molecular view the atom-labelling scheme. Ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.

Fig. 2. The diorder in cyclopent-1-ene ring.

1-[5-(3-Chlorophenyl)-2-methyl-3-thienyl]-3,3,4,4,5,5- hexafluoro-2-(2-methoxyphenyl)cyclopent-1-ene

Crystal data	
C ₂₃ H ₁₅ ClF ₆ OS	Z = 2
$M_r = 488.86$	$F_{000} = 496$
Triclinic, PT	$D_{\rm x} = 1.502 {\rm ~Mg~m}^{-3}$
<i>a</i> = 9.4057 (10) Å	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
b = 10.2900 (11) Å	Cell parameters from 4346 reflections
c = 11.9548 (13) Å	$\theta = 2.5 - 28.1^{\circ}$
$\alpha = 83.5290 \ (10)^{\circ}$	$\mu = 0.34 \text{ mm}^{-1}$
$\beta = 71.5640 \ (10)^{\circ}$	T = 291 K
$\gamma = 80.6390 \ (10)^{\circ}$	Block, colourless
$V = 1080.7 (2) \text{ Å}^3$	$0.49\times0.45\times0.33~mm$

Data collection

Bruker SMART CCD area-detector diffractometer	3997 independent reflections
Radiation source: fine-focus sealed tube	3358 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.011$
T = 291 K	$\theta_{max} = 25.5^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.5^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -11 \rightarrow 11$
$T_{\min} = 0.851, \ T_{\max} = 0.896$	$k = -12 \rightarrow 12$
8254 measured reflections	$l = -14 \rightarrow 14$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.040$	H-atom parameters constrained
$wR(F^2) = 0.111$	$w = 1/[\sigma^2(F_o^2) + (0.0497P)^2 + 0.4496P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.03	$(\Delta/\sigma)_{\rm max} = 0.001$

3997 reflections

 $\Delta \rho_{\text{max}} = 0.28 \text{ e } \text{\AA}^{-3}$

321 parameters553 restraints

 $\Delta \rho_{min} = -0.36 \text{ e } \text{\AA}^{-3}$ Extinction correction: none

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
C9	0.7086 (3)	0.7630 (3)	0.5031 (3)	0.0560 (8)	0.784 (3)
F1	0.5898 (3)	0.8609 (2)	0.5303 (2)	0.0930 (9)	0.784 (3)
F2	0.7750 (3)	0.7584 (2)	0.58991 (15)	0.0854 (7)	0.784 (3)
C9'	0.6784 (10)	0.7854 (12)	0.4846 (8)	0.0560 (8)	0.216 (3)
F1'	0.5498 (9)	0.8402 (8)	0.4640 (8)	0.0930 (9)	0.216 (3)
F2'	0.6890 (12)	0.8415 (10)	0.5755 (6)	0.0854 (7)	0.216 (3)
C10	0.6576 (3)	0.6302 (3)	0.5013 (3)	0.0566 (7)	0.826 (2)
F3	0.52853 (19)	0.6483 (2)	0.4715 (2)	0.0893 (6)	0.826 (2)
F4	0.6283 (3)	0.56317 (19)	0.60649 (15)	0.0877 (6)	0.826 (2)
C10'	0.6811 (14)	0.6391 (15)	0.5180 (12)	0.0566 (7)	0.174 (2)
F3'	0.5428 (9)	0.6053 (11)	0.5606 (12)	0.0893 (6)	0.174 (2)
F4'	0.7538 (10)	0.5982 (9)	0.5974 (7)	0.0877 (6)	0.174 (2)
C11	0.7876 (3)	0.5608 (3)	0.4040 (3)	0.0504 (6)	0.834 (5)
F5	0.7345 (3)	0.4861 (3)	0.34450 (17)	0.0778 (7)	0.834 (5)
F6	0.8815 (3)	0.4760 (2)	0.4529 (2)	0.0771 (7)	0.834 (5)
C11'	0.7621 (15)	0.5759 (12)	0.4012 (12)	0.0504 (6)	0.166 (5)
F5'	0.6680 (14)	0.5518 (13)	0.3457 (9)	0.0778 (7)	0.166 (5)
F6'	0.8458 (15)	0.4630 (13)	0.4176 (13)	0.0771 (7)	0.166 (5)
Cl1	1.52883 (10)	0.09741 (8)	0.13406 (7)	0.1001 (3)	
S1	1.10823 (7)	0.64743 (6)	-0.01005 (5)	0.05725 (18)	
O1	1.11475 (18)	0.81945 (15)	0.35023 (17)	0.0710 (5)	
C1	1.0232 (2)	0.9304 (2)	0.32810 (19)	0.0521 (5)	
C2	1.0714 (3)	1.0534 (2)	0.2928 (2)	0.0672 (6)	
H2	1.1715	1.0634	0.2819	0.081*	
C3	0.9705 (3)	1.1608 (2)	0.2740 (2)	0.0705 (7)	
H3	1.0039	1.2427	0.2500	0.085*	
C4	0.8232 (3)	1.1490 (2)	0.2899 (2)	0.0650 (6)	

$\begin{array}{c} 1.2222\\ 1.0270\ (2)\\ 1.0188\\ 0.91614\ (18)\\ 0.8347\ (3)\\ 0.8689\\ 0.7506\\ 0.8949\\ 0.78631\ (19)\\ 0.67244\ (18)\\ 0.64498\ (17)\\ \end{array}$	$\begin{array}{c} 0.2777\\ 0.32442\ (19)\\ 0.3356\\ 0.34282\ (16)\\ 0.3900\ (2)\\ 0.3256\\ 0.4198\\ 0.4518\\ 0.38147\ (17)\\ 0.32766\ (16)\\ 0.21130\ (16) \end{array}$	0.078* 0.0539 (5) 0.065* 0.0444 (4) 0.0758 (7) 0.114* 0.114* 0.114* 0.114* 0.0442 (4) 0.0413 (4) 0.0419 (4)
$\begin{array}{c} 1.0270\ (2)\\ 1.0188\\ 0.91614\ (18)\\ 0.8347\ (3)\\ 0.8689\\ 0.7506\\ 0.8949\\ 0.78631\ (19)\\ 0.67244\ (18)\\ 0.64498\ (17)\end{array}$	0.32442 (19) 0.3356 0.34282 (16) 0.3900 (2) 0.3256 0.4198 0.4518 0.38147 (17) 0.32766 (16) 0.21130 (16)	0.0539 (5) 0.065* 0.0444 (4) 0.0758 (7) 0.114* 0.114* 0.114* 0.0442 (4) 0.0413 (4) 0.0419 (4)
$\begin{array}{c} 1.0188\\ 0.91614\ (18)\\ 0.8347\ (3)\\ 0.8689\\ 0.7506\\ 0.8949\\ 0.78631\ (19)\\ 0.67244\ (18)\\ 0.64498\ (17)\end{array}$	0.3356 0.34282 (16) 0.3900 (2) 0.3256 0.4198 0.4518 0.38147 (17) 0.32766 (16) 0.21130 (16)	0.065* 0.0444 (4) 0.0758 (7) 0.114* 0.114* 0.114* 0.0442 (4) 0.0413 (4) 0.0419 (4)
0.91614 (18) 0.8347 (3) 0.8689 0.7506 0.8949 0.78631 (19) 0.67244 (18) 0.64498 (17)	0.34282 (16) 0.3900 (2) 0.3256 0.4198 0.4518 0.38147 (17) 0.32766 (16) 0.21130 (16)	0.0444 (4) 0.0758 (7) 0.114* 0.114* 0.114* 0.0442 (4) 0.0413 (4) 0.0419 (4)
0.8347 (3) 0.8689 0.7506 0.8949 0.78631 (19) 0.67244 (18) 0.64498 (17)	0.3900 (2) 0.3256 0.4198 0.4518 0.38147 (17) 0.32766 (16) 0.21130 (16)	0.0758 (7) 0.114* 0.114* 0.114* 0.0442 (4) 0.0413 (4) 0.0419 (4)
0.8689 0.7506 0.8949 0.78631 (19) 0.67244 (18) 0.64498 (17)	0.3256 0.4198 0.4518 0.38147 (17) 0.32766 (16) 0.21130 (16)	0.114* 0.114* 0.114* 0.0442 (4) 0.0413 (4) 0.0419 (4)
0.7506 0.8949 0.78631 (19) 0.67244 (18) 0.64498 (17)	0.4198 0.4518 0.38147 (17) 0.32766 (16) 0.21130 (16)	0.114* 0.114* 0.0442 (4) 0.0413 (4) 0.0419 (4)
0.8949 0.78631 (19) 0.67244 (18) 0.64498 (17)	0.4518 0.38147 (17) 0.32766 (16) 0.21130 (16)	0.114* 0.0442 (4) 0.0413 (4) 0.0419 (4)
0.78631 (19) 0.67244 (18) 0.64498 (17)	0.38147 (17) 0.32766 (16) 0.21130 (16)	0.0442 (4) 0.0413 (4) 0.0419 (4)
0.67244 (18) 0.64498 (17)	0.32766 (16) 0.21130 (16)	0.0413 (4) 0.0419 (4)
0.64498 (17)	0.21130 (16)	0.0419 (4)
0.53693 (18)	0.19382 (17)	0.0440 (4)
0.4798	0.2554	0.053*
0.52489 (19)	0.07887 (17)	0.0461 (4)
0.71461 (19)	0.10727 (18)	0.0488 (5)
0.8294 (2)	0.0852 (2)	0.0666 (6)
0.8263	0.1451	0.100*
0.8248	0.0090	0.100*
0.9104	0.0873	0.100*
0.4285 (2)	0.02687 (17)	0.0480 (4)
	-0.0917 (2)	0.0658 (6)
0.4423 (2)	-0.1399	0.079*
0.4423 (2) 0.5128	0.1201 (2)	0.0772 (7)
0.4423 (2) 0.5128 0.3523 (3)	-0.1381(2)	0.093*
0.4423 (2) 0.5128 0.3523 (3) 0.3638	-0.1381(2) -0.2170	
0.4423 (2) 0.5128 0.3523 (3) 0.3638 0.2472 (3)	-0.1381 (2) -0.2170 -0.0706 (2)	0.0681 (6)
0.4423 (2) 0.5128 0.3523 (3) 0.3638 0.2472 (3) 0.1868	-0.1381 (2) -0.2170 -0.0706 (2) -0.1025	0.0681 (6) 0.082*
0.4423 (2) 0.5128 0.3523 (3) 0.3638 0.2472 (3) 0.1868 0.2320 (2)	-0.1381 (2) -0.2170 -0.0706 (2) -0.1025 0.0462 (2)	0.0681 (6) 0.082* 0.0594 (5)
0.4423 (2) 0.5128 0.3523 (3) 0.3638 0.2472 (3) 0.1868 0.2320 (2) 0.3205 (2)	$\begin{array}{c} -0.1381 (2) \\ -0.2170 \\ -0.0706 (2) \\ -0.1025 \\ 0.0462 (2) \\ 0.09609 (19) \end{array}$	0.0681 (6) 0.082* 0.0594 (5) 0.0531 (5)
	0.3523 (3) 0.3638	

Atomic displacement parameters (\AA^2)

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
C9	0.0574 (15)	0.0530 (16)	0.0522 (14)	-0.0082 (12)	-0.0075 (11)	-0.0065 (12)
F1	0.0854 (14)	0.0621 (11)	0.0886 (17)	0.0065 (10)	0.0275 (13)	-0.0103 (11)
F2	0.1147 (17)	0.1028 (17)	0.0470 (9)	-0.0445 (13)	-0.0213 (10)	-0.0054 (10)
C9'	0.0574 (15)	0.0530 (16)	0.0522 (14)	-0.0082 (12)	-0.0075 (11)	-0.0065 (12)
F1'	0.0854 (14)	0.0621 (11)	0.0886 (17)	0.0065 (10)	0.0275 (13)	-0.0103 (11)
F2'	0.1147 (17)	0.1028 (17)	0.0470 (9)	-0.0445 (13)	-0.0213 (10)	-0.0054 (10)
C10	0.0539 (14)	0.0575 (13)	0.0548 (14)	-0.0176 (11)	-0.0095 (10)	0.0055 (11)
F3	0.0540 (9)	0.0936 (14)	0.1218 (17)	-0.0148 (9)	-0.0273 (11)	-0.0044 (12)
F4	0.1098 (16)	0.0752 (11)	0.0590 (10)	-0.0282 (11)	0.0021 (10)	0.0153 (8)
C10'	0.0539 (14)	0.0575 (13)	0.0548 (14)	-0.0176 (11)	-0.0095 (10)	0.0055 (11)
F3'	0.0540 (9)	0.0936 (14)	0.1218 (17)	-0.0148 (9)	-0.0273 (11)	-0.0044 (12)
F4'	0.1098 (16)	0.0752 (11)	0.0590 (10)	-0.0282 (11)	0.0021 (10)	0.0153 (8)
C11	0.0549 (14)	0.0419 (12)	0.0553 (11)	-0.0108 (11)	-0.0182 (10)	0.0030 (9)
F5	0.0961 (16)	0.0636 (15)	0.0790 (10)	-0.0429 (13)	-0.0152 (10)	-0.0131 (10)
F6	0.0748 (13)	0.0608 (10)	0.0836 (16)	0.0013 (9)	-0.0233 (9)	0.0277 (10)

C11'	0.0549 (14)	0.0419 (12)	0.0553 (11)	-0.0108 (11)	-0.0182 (10)	0.0030 (9)
F5'	0.0961 (16)	0.0636 (15)	0.0790 (10)	-0.0429 (13)	-0.0152 (10)	-0.0131 (10)
F6'	0.0748 (13)	0.0608 (10)	0.0836 (16)	0.0013 (9)	-0.0233 (9)	0.0277 (10)
Cl1	0.0996 (6)	0.0937 (5)	0.0895 (5)	0.0389 (4)	-0.0325 (4)	0.0023 (4)
S1	0.0699 (4)	0.0557 (3)	0.0415 (3)	0.0014 (3)	-0.0171 (2)	0.0026 (2)
01	0.0581 (9)	0.0508 (9)	0.1132 (14)	-0.0043 (7)	-0.0380 (9)	-0.0118 (9)
C1	0.0571 (12)	0.0424 (10)	0.0589 (12)	-0.0093 (9)	-0.0176 (10)	-0.0084 (9)
C2	0.0677 (14)	0.0549 (13)	0.0837 (16)	-0.0232 (11)	-0.0220 (12)	-0.0052 (12)
C3	0.0964 (19)	0.0432 (12)	0.0748 (16)	-0.0224 (12)	-0.0259 (14)	0.0020 (11)
C4	0.0873 (17)	0.0440 (12)	0.0642 (14)	-0.0038 (11)	-0.0281 (12)	0.0024 (10)
C5	0.0603 (12)	0.0479 (11)	0.0533 (12)	-0.0045 (9)	-0.0188 (10)	-0.0024 (9)
C6	0.0521 (11)	0.0388 (10)	0.0421 (10)	-0.0067 (8)	-0.0127 (8)	-0.0059 (8)
C7	0.0712 (16)	0.0849 (18)	0.0764 (17)	-0.0021 (14)	-0.0305 (13)	-0.0147 (14)
C8	0.0458 (10)	0.0430 (10)	0.0450 (10)	-0.0086 (8)	-0.0144 (8)	-0.0029 (8)
C12	0.0436 (10)	0.0388 (9)	0.0451 (10)	-0.0074 (8)	-0.0181 (8)	-0.0002 (8)
C13	0.0484 (10)	0.0366 (9)	0.0436 (10)	-0.0088 (8)	-0.0171 (8)	-0.0016 (7)
C14	0.0510(11)	0.0389 (9)	0.0429 (10)	-0.0050 (8)	-0.0171 (8)	0.0006 (8)
C15	0.0516 (11)	0.0424 (10)	0.0457 (10)	-0.0070 (8)	-0.0169 (9)	-0.0019 (8)
C16	0.0577 (12)	0.0431 (10)	0.0471 (11)	-0.0033 (9)	-0.0203 (9)	-0.0015 (8)
C17	0.0837 (17)	0.0573 (13)	0.0593 (13)	0.0119 (12)	-0.0337 (12)	-0.0014 (11)
C18	0.0510 (11)	0.0471 (11)	0.0461 (10)	-0.0060 (8)	-0.0142 (9)	-0.0067 (8)
C19	0.0787 (16)	0.0590 (13)	0.0490 (12)	-0.0009 (11)	-0.0087 (11)	-0.0029 (10)
C20	0.0825 (17)	0.0754 (17)	0.0548 (14)	-0.0005 (14)	0.0032 (12)	-0.0114 (12)
C21	0.0601 (14)	0.0703 (15)	0.0658 (15)	0.0051 (11)	-0.0086 (11)	-0.0218 (12)
C22	0.0572 (13)	0.0586 (13)	0.0627 (13)	0.0036 (10)	-0.0226 (11)	-0.0089 (10)
C23	0.0513 (11)	0.0568 (12)	0.0477 (11)	-0.0030 (9)	-0.0115 (9)	-0.0058 (9)

Geometric parameters (Å, °)

C9—F1	1.359 (3)	С3—Н3	0.9300
C9—F2	1.363 (4)	C4—C5	1.381 (3)
С9—С8	1.514 (3)	С4—Н4	0.9300
C9—C10	1.525 (4)	C5—C6	1.392 (3)
C9'—F2'	1.324 (9)	С5—Н5	0.9300
C9'—F1'	1.332 (9)	C6—C8	1.481 (3)
C9'—C8	1.493 (8)	С7—Н7А	0.9600
C9'—C10'	1.512 (9)	С7—Н7В	0.9600
C10—F4	1.334 (3)	С7—Н7С	0.9600
C10—F3	1.349 (3)	C8—C12	1.342 (3)
C10—C11	1.536 (4)	C12-C13	1.469 (3)
C10'—F3'	1.327 (10)	C13—C16	1.375 (3)
C10'—F4'	1.332 (10)	C13—C14	1.426 (3)
C10'—C11'	1.524 (9)	C14—C15	1.361 (3)
C11—F5	1.348 (3)	C14—H14	0.9300
C11—F6	1.358 (3)	C15—C18	1.472 (3)
C11—C12	1.510 (3)	C16—C17	1.502 (3)
C11'—F6'	1.326 (10)	C17—H17A	0.9600
C11'—F5'	1.328 (10)	С17—Н17В	0.9600
C11'—C12	1.500 (9)	С17—Н17С	0.9600

Cl1—C22	1.741 (2)	C18—C19	1.396 (3)
S1—C16	1.718 (2)	C18—C23	1.396 (3)
S1—C15	1.731 (2)	C19—C20	1.380 (3)
01—C1	1.368 (3)	С19—Н19	0.9300
O1—C7	1.405 (3)	C20—C21	1.359 (4)
C1—C2	1.389 (3)	С20—Н20	0.9300
C1—C6	1.398 (3)	C21—C22	1.377 (3)
C2—C3	1.383 (4)	C21—H21	0.9300
С2—Н2	0.9300	C22—C23	1.376 (3)
C3—C4	1.361 (4)	С23—Н23	0.9300
F1—C9—F2	105.1 (3)	C5—C6—C8	120.66 (18)
F1—C9—C8	112.8 (2)	C1—C6—C8	120.53 (17)
F2—C9—C8	111.9 (2)	O1—C7—H7A	109.5
F1—C9—C10	111.9 (3)	O1—C7—H7B	109.5
F2—C9—C10	110.1 (2)	H7A—C7—H7B	109.5
C8—C9—C10	105.2 (2)	O1—C7—H7C	109.5
F2'—C9'—F1'	107.7 (8)	H7A—C7—H7C	109.5
F2'—C9'—C8	112.1 (8)	H7B—C7—H7C	109.5
F1'	116.1 (8)	C12—C8—C6	129.26 (18)
F2'—C9'—C10'	107.2 (10)	C12—C8—C9'	114.1 (5)
F1'	112.4 (9)	C6—C8—C9'	115.9 (5)
C8—C9'—C10'	100.9 (7)	C12—C8—C9	109.6 (2)
F4—C10—F3	106.5 (2)	C6—C8—C9	120.8 (2)
F4—C10—C9	112.6 (3)	C8—C12—C13	129.51 (17)
F3—C10—C9	110.1 (3)	C8—C12—C11'	106.6 (6)
F4—C10—C11	114.1 (3)	C13—C12—C11'	123.3 (6)
F3—C10—C11	110.1 (2)	C8—C12—C11	111.5 (2)
C9—C10—C11	103.5 (2)	C13—C12—C11	118.97 (19)
F3'—C10'—F4'	108.1 (9)	C16—C13—C14	112.60 (17)
F3'—C10'—C9'	111.9 (11)	C16—C13—C12	124.45 (17)
F4'—C10'—C9'	112.7 (11)	C14—C13—C12	122.85 (16)
F3'—C10'—C11'	109.3 (11)	C15—C14—C13	113.91 (17)
F4'—C10'—C11'	111.1 (11)	C15—C14—H14	123.0
C9'—C10'—C11'	103.7 (9)	C13—C14—H14	123.0
F5—C11—F6	105.7 (2)	C14—C15—C18	129.71 (18)
F5-C11-C12	113.2 (2)	C14—C15—S1	109.86 (15)
F6—C11—C12	112.9 (2)	C18—C15—S1	120.42 (15)
F5-C11-C10	110.8 (2)	C13—C16—C17	129.94 (19)
F6—C11—C10	110.0 (3)	C13—C16—S1	110.41 (15)
C12-C11-C10	104.2(2)	C17—C16—S1	119 58 (16)
F6'-C11'-F5'	107 9 (9)	C16—C17—H17A	109.5
F6'	109.1 (11)	C16—C17—H17B	109.5
F5'-C11'-C12	110 4 (9)	H17A—C17—H17B	109.5
F6'-C11'-C10'	110.9 (12)	C16-C17-H17C	109.5
F5'-C11'-C10'	113 1 (11)	H17A-C17-H17C	109.5
C12—C11'—C10'	105 4 (8)	H17B-C17-H17C	109.5
C16 - S1 - C15	93 21 (9)	C19-C18-C23	118 1 (2)
C1 - 01 - C7	118 22 (18)	C19-C18-C15	12150(2)
01 - 01 - 07	123 8 (2)	$C_{13} - C_{16} - C_{15}$	121.30 (19)
$01 \ 01 \ 02$	123.0 (2)	025 -010-015	120.57 (10)

O1—C1—C6	116.66 (17)	C20-C19-C18	120.6 (2)
C2—C1—C6	119.5 (2)	С20—С19—Н19	119.7
C3—C2—C1	120.0 (2)	С18—С19—Н19	119.7
С3—С2—Н2	120.0	C21—C20—C19	121.2 (2)
C1—C2—H2	120.0	C21—C20—H20	119.4
C4—C3—C2	121.2 (2)	С19—С20—Н20	119.4
С4—С3—Н3	119.4	C20—C21—C22	118.6 (2)
С2—С3—Н3	119.4	C20—C21—H21	120.7
C3—C4—C5	119.2 (2)	C22—C21—H21	120.7
C3—C4—H4	120.4	C23—C22—C21	122.0 (2)
С5—С4—Н4	120.4	C23—C22—Cl1	118.70 (18)
C4—C5—C6	121.3 (2)	C21—C22—Cl1	119.34 (18)
С4—С5—Н5	119.4	C22—C23—C18	119.6 (2)
С6—С5—Н5	119.4	С22—С23—Н23	120.2
C5—C6—C1	118.77 (18)	C18—C23—H23	120.2
F1—C9—C10—F4	-89.8 (3)	C10—C9—C8—C12	-16.4 (3)
F2—C9—C10—F4	26.7 (4)	F1—C9—C8—C6	47.6 (4)
C8—C9—C10—F4	147.5 (3)	F2—C9—C8—C6	-70.7 (3)
F1—C9—C10—F3	28.9 (4)	C10—C9—C8—C6	169.7 (2)
F2—C9—C10—F3	145.4 (3)	F1—C9—C8—C9'	-29.7 (18)
C8—C9—C10—F3	-93.8 (3)	F2—C9—C8—C9'	-148 (2)
F1-C9-C10-C11	146.6 (3)	C10—C9—C8—C9'	92 (2)
F2-C9-C10-C11	-96.9 (3)	C6—C8—C12—C13	-4.6 (3)
C8—C9—C10—C11	23.8 (3)	C9'—C8—C12—C13	165.0 (5)
F2'—C9'—C10'—F3'	95.5 (11)	C9—C8—C12—C13	-177.7 (2)
F1'	-22.6 (13)	C6—C8—C12—C11'	-175.7 (6)
C8—C9'—C10'—F3'	-147.0 (10)	C9'—C8—C12—C11'	-6.1 (7)
F2'	-26.6 (13)	C9—C8—C12—C11'	11.2 (6)
F1'	-144.7 (9)	C6—C8—C12—C11	174.6 (2)
C8—C9'—C10'—F4'	90.9 (11)	C9'—C8—C12—C11	-15.8 (5)
F2'-C9'-C10'-C11'	-146.8 (9)	C9—C8—C12—C11	1.5 (3)
F1'	95.0 (10)	F6'-C11'-C12-C8	-132.9 (9)
C8—C9'—C10'—C11'	-29.3 (10)	F5'-C11'-C12-C8	108.7 (10)
F4-C10-C11-F5	92.5 (3)	C10'-C11'-C12-C8	-13.7 (10)
F3-C10-C11-F5	-27.2 (3)	F6'-C11'-C12-C13	55.3 (12)
C9—C10—C11—F5	-144.9 (2)	F5'-C11'-C12-C13	-63.1 (12)
F4—C10—C11—F6	-24.1 (3)	C10'-C11'-C12-C13	174.5 (6)
F3—C10—C11—F6	-143.8 (3)	F6'-C11'-C12-C11	-13 (3)
C9—C10—C11—F6	98.5 (3)	F5'-C11'-C12-C11	-131 (4)
F4—C10—C11—C12	-145.4 (2)	C10'—C11'—C12—C11	106 (4)
F3—C10—C11—C12	94.9 (3)	F5-C11-C12-C8	134.4 (2)
C9—C10—C11—C12	-22.8 (3)	F6—C11—C12—C8	-105.5 (3)
F3'—C10'—C11'—F6'	-95.1 (13)	C10—C11—C12—C8	13.9 (3)
F4'—C10'—C11'—F6'	24.1 (13)	F5-C11-C12-C13	-46.3 (3)
C9'—C10'—C11'—F6'	145.4 (10)	F6-C11-C12-C13	73.8 (3)
F3'—C10'—C11'—F5'	26.3 (13)	C10—C11—C12—C13	-166.80 (19)
F4'—C10'—C11'—F5'	145.5 (10)	F5-C11-C12-C11'	71 (4)
C9'—C10'—C11'—F5'	-93.2 (10)	F6—C11—C12—C11'	-169 (4)
F3'	146.9 (10)	C10-C11-C12-C11'	-49 (4)

F4'—C10'—C11'—C12	-93.8 (11)	C8—C12—C13—C16	-52.8 (3)
C9'—C10'—C11'—C12	27.4 (12)	C11'-C12-C13-C16	117.0 (7)
C7—O1—C1—C2	28.8 (3)	C11—C12—C13—C16	128.1 (2)
C7—O1—C1—C6	-151.1 (2)	C8—C12—C13—C14	131.0 (2)
O1—C1—C2—C3	-179.1 (2)	C11'-C12-C13-C14	-59.2 (7)
C6—C1—C2—C3	0.8 (4)	C11—C12—C13—C14	-48.2 (3)
C1—C2—C3—C4	0.3 (4)	C16-C13-C14-C15	0.6 (2)
C2—C3—C4—C5	-0.6 (4)	C12-C13-C14-C15	177.27 (17)
C3—C4—C5—C6	-0.2 (3)	C13-C14-C15-C18	178.83 (18)
C4—C5—C6—C1	1.3 (3)	C13—C14—C15—S1	-0.5 (2)
C4—C5—C6—C8	179.1 (2)	C16—S1—C15—C14	0.21 (16)
O1-C1-C6-C5	178.30 (19)	C16—S1—C15—C18	-179.19 (16)
C2—C1—C6—C5	-1.6 (3)	C14—C13—C16—C17	176.5 (2)
O1—C1—C6—C8	0.5 (3)	C12-C13-C16-C17	-0.1 (3)
C2—C1—C6—C8	-179.4 (2)	C14—C13—C16—S1	-0.4 (2)
C5—C6—C8—C12	120.1 (2)	C12-C13-C16-S1	-177.03 (14)
C1—C6—C8—C12	-62.1 (3)	C15—S1—C16—C13	0.14 (16)
C5—C6—C8—C9'	-49.3 (5)	C15—S1—C16—C17	-177.15 (18)
C1—C6—C8—C9'	128.5 (5)	C14—C15—C18—C19	-171.0 (2)
C5—C6—C8—C9	-67.4 (3)	S1-C15-C18-C19	8.3 (3)
C1—C6—C8—C9	110.4 (2)	C14—C15—C18—C23	8.5 (3)
F2'—C9'—C8—C12	137.0 (8)	S1—C15—C18—C23	-172.26 (16)
F1'—C9'—C8—C12	-98.6 (9)	C23—C18—C19—C20	-0.8 (4)
C10'—C9'—C8—C12	23.2 (8)	C15-C18-C19-C20	178.7 (2)
F2'—C9'—C8—C6	-52.0 (10)	C18—C19—C20—C21	0.9 (4)
F1'—C9'—C8—C6	72.5 (10)	C19—C20—C21—C22	-0.2 (4)
C10'—C9'—C8—C6	-165.8 (6)	C20—C21—C22—C23	-0.6 (4)
F2'—C9'—C8—C9	59.4 (16)	C20-C21-C22-Cl1	179.5 (2)
F1'	-176 (3)	C21—C22—C23—C18	0.6 (3)
C10'—C9'—C8—C9	-54.4 (18)	Cl1—C22—C23—C18	-179.50 (17)
F1C9C8C12	-138.6 (3)	C19—C18—C23—C22	0.1 (3)
F2	103.1 (3)	C15—C18—C23—C22	-179.40 (19)

Fig. 1

